

BenthoVAL Biotic Index:

Test of a new index based on the concept of the loss of abundance of species

Labrune C., Conde A., Gallon R., Gauthier O., Grall J., Romero-Ramirez A., Grémare A. and RESOMAR team

contact: labrune@obs-banyuls.fr

Coast Bordeaux 2017

Context and aim of the study

Context

Most of the existing metrics currently used to infer the Ecological Quality Status of marine benthic habitats from benthic macrofauna composition are either based on:

- (1) the sensitivity tolerance concept
- (2) assessment of the deviation from a reference status

BI based on multidimensional deviation from a reference condition

- Implies changes in community structure/composition
- Anthropogenic stress gradient
- Independent on lists of sensitivity of species
- The loss of species (or individuals) should have more weight than the gain of species in the detection of any impact

Reference site(s)

- Community harbored by habitat under natural conditions
- Not necessarily pristine but outside of the pressure extend
- Monitored in parallel

The B_{Val} index

$$B_{Val} = 1 - \frac{\Sigma(r_i - x_i)}{\Sigma(r_i)} \quad \text{if } r_i > x_i$$

- If $r_i >> xi$: $\frac{\Sigma(ri xi)}{\Sigma(ri)} \simeq 1$ and $B_{Val} \simeq 0 \rightarrow Bad EcoQ$ If $ri \simeq xi$: $\frac{\Sigma(ri xi)}{\Sigma(ri)} \simeq 0$ and $B_{Val} \simeq 1 \rightarrow Good EcoQ$
- If all $r_i < x_i$: $B_{Val} = NA$ and R is probably not a suitable reference

1. Present the results of B_{Val} tested on a physical disturbance context

- -Macrofauna maerl beds french dataset
- -Pressure: maerl extraction

2. Present the results of B_{Val} tested on a chemical disturbance context and compared with the Scandinavian indices

3. Propose an approach to define a G/M border of EcoQ

Based on the Signal Detection Theory, illustrated by ROC curves, from which AUC can be used as a measure of the indicator response

1: The Glenan Archipelago dataset

- Macrofauna maerl beds dataset
- Pressure: maerl extraction
- 52 stations
- Three 0.1m² Van Veen grab samples were collected at each station
- Sieved on a 1mm mesh size

Stations were a priori classified based on the Telemac-2D hydrosedimentary model taking into account:

- maerl extraction location,
- timing,
- volumes extracted
- tide currents

1. Glenan Archipelago

2. Gullmarfjord

This dataset consists in a 1 station long-term time series sampled between 1977 and 2010 in 56 occasions. The station is located 118m depth, the major disturbance is hypoxia and the pressure proxy is the near bottom O_2 concentration.

 $ightharpoonup B_{Val}$ correlated positively with the average O_2 concentration during the year preceding each sampling date (Spearman rank correlation; τ =0.48, p<0.001).

2. Gullmarfjord

B_{Val} correlated positively with BQI, DKI and NQI (Spearman Rank Correlation test)

BQI: τ =0.806, p<0.001, N=49 DKI: τ =0.682, p<0.001, N=49 NQI: τ =0.534, p<0.001, N=45

B_{val} is able to detect a hypoxia and correlate with the existing Scandinavian indices constructed for this area

3: Propose a G/M border of EcoQ

Ecological Applications, 6(1), 1996, pp. 132-139 © 1996 by the Ecological Society of America

THE STATISTICAL EVALUATION OF ECOLOGICAL INDICATORS¹

PAUL A. MURTAUGH
Department of Statistics, Oregon State University, Corvallis, Oregon 97331 USA

$$\widehat{H}_{(c)} = \frac{TP_{(c)}}{TP_{(c)} + FN_{(c)}}$$

$$\hat{F}_{(c)} = \frac{TN_{(c)}}{TN_{(c)} + FP_{(c)}}$$

3. Propose a G/M border of EcoQ

Conclusions

- Byal index discriminates impacted vs not impacted stations
- The advantages of the Bval index:
- Do not need a list of sensitivity (which is in general associated to a geographic area and a type of pressure)
 - It can be used for any type of pressure
- The limits of the Bval index:
- Gives information on degradation only → Need to be absolutely confident about the reference
- Possibility to look at the gain of species and change of reference station if one better
- Importance of elaborate a sampling strategy adequate with this methodology
 - A minimum of 1 reference station /habitat
 - All stations sampled at the same time

Perspectives

- Compare the values of B_{Val} with the values of different indices such as AMBI, BQI, NKI, DKI etc...on other datasets

- Test B_{Val} on other datasets with quantified pressure in order to adjust the G/M border

Thank you for your attention!

Acknowledgment: Mats Bloomqvist and the swedish team

Protocol for assessment

- Define habitat subsets (depth, grain size ...)
- Define temporal subsets within these subsets (if possible)
 - Keep years separate
 - Keep seasons/months/dates separate
- Choose reference(s) within subsets

The index proposed

$$B_{Val} = 1 - \frac{\Sigma(ri - xi)^*}{\Sigma(ri)}$$

*: if
$$r_i > xi$$

ne scandinavian indice

Assessment of marine benthic quality change in gradients of disturbance: Comparison of different Scandinavian multi-metric indices

Alf B. Josefson a.*, Mats Blomqvist b, Jørgen L.S. Hansen a, Rutger Rosenberg c, Brage Rygg d

Department of Marine Ecology, National Environmental Research Institute, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denn

Hajok AB, Skogsvagen 25, 3E-179 61 Stennamra, Sweaen
 Department of Marine Ecology, University of Gothenburg, Kristineberg 566, SE-450 34 Fiskebäckskil, Sweden

$$DKI \neq \left(\underbrace{\left(1 - \underbrace{\frac{AMBI}{7}\right) + \left(\frac{H'}{H'_{max}}\right)}_{2}\right) \times \left(\underbrace{\left(1 - \left(\frac{1}{N}\right) + \left(1 - \left(\frac{1}{S}\right)\right)}_{2}\right)$$

$$NQI = 0.5 \times \left(1 - \frac{AMBI}{7}\right) + \left(0.5 \times \frac{SN}{2.7} \times \frac{N_{tot}}{N_{tot} + 5}\right)$$
 where $SN = \ln(S) / \ln(\ln(N))$

$$BQI = (\sum_{i=1}^{Sclas} (\frac{Ni}{Nclas} \times \underbrace{ES500,05})) \times \log_{10}(S+1) \times (\frac{N_{tot}}{N_{tot}+5})$$